Reg.No.:		

VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN [AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 7003

B.E. / B.Tech. DEGREE SUPPLEMENTARY EXAMINATIONS – FEB. / MAR. 2020

Third Semester

Electronics and Communication Engineering
U15EC303 – NETWORK ANALYSIS AND SYNTHESIS

(Regulation 2015)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

PART - A

 $(10 \times 2 = 20 \text{ Marks})$

- 1. State superposition theorem.
- 2. An electrical appliance consumes 1.2 kWh in 30 minutes at 120V. Calculate the current drawn by the appliance.
- 3. Find the resonant frequency of a series RLC Circuit when R=5k Ω , L=3H, and C = (1/200) μ F.
- 4. What is the transform impedance & transform admittance of the capacitor?
- 5. For the two port network shown in the figure, the impedance (Z) matrix (in Ω) is

- 6. Define Voltage transfer ratio.
- 7. What will be the value of equivalent single source, if the two voltage sources connected in series combination possess equal or similar polarity?
- 8. The attenuation and characteristic impedance of a symmetrical lattice attenuator are 40dB and 500Ω respectively. Design the network.
- 9. The driving point impedance of a network is given by $\frac{(s^3 + 4s + 3)}{s(s+2)(s+5)}$. Calculate the minimum number of elements required to realize this network.
- 10. Define Hurwitz polynomial.

 $(5 \times 13 = 65 \text{ Marks})$

11. a) i. In a series circuit containing a pure resistance and a pure inductance, the voltage and current are $v(t) = 15 \sin{(314 \ t} + 5\pi/6)$ & $i(t) = 5 \sin{(314 \ t} + 2\pi/3)$. Calculate Impedance of the circuit, resistance & inductance, average power drawn by the circuit & Power factor of the current. (8)

ii. Use Superposition theorem to find voltage V across 10Ω resistor. (5)

b) Obtain the mesh current equations for the circuit below by inspection. Calculate the power absorbed by the 8Ω resistor.

12. a) In a series RLC circuit shown, the initial voltage across the capacitor is 10V and the initial current through inductor is zero. Determine i(t).

b) In the circuit shown below, switch K is moved from position 1 to position 2 at time t=0. At time t=0-, the current in the inductor is I_0 and the voltage at the capacitor is V_0 . Determine $V_C \& I_L$.

13. a) i. Determine the Y parameters for the two port network. (8)

ii. A two port network is described by the following equations:

$$V_1=50I_1+20I_2$$

 $V_2=30I_1+10I_2$. Find $Z_{12} \& Y_{12}$. (5)

b) Determine the Y parameters for the two port network.

14. a) Explain Symmetrical T type attenuators with relevant derivations.

(OR)

- b) Design a composite high pass filter to operate into load of 600Ω with 1.2 kHz cut-off frequency and infinite attenuation at 1.1kHz. The composite filter should have constant K type section, m-derived section and suitable terminating sections.
- 15. a) Synthesize the following function as driving point impedance and admittance.

$$F(s) = \frac{2(s^2 + 1)(s^2 + 9)}{s(s^2 + 4)}$$

b) Explain about R-C driving point impedance, its properties and synthesis with an example.

 $(1 \times 15 = 15 \text{Marks})$

0

16 a) i. Find the current flow through 10Ω resistor using source transformation. (10)

ii. Find the current flow through all resistors for the circuit shown below. (5)

b) Synthesize a third order Butterworth low pass filter terminated in 1 Ω resistance and having transfer impedance Z21 of third order Butterworth polynomial.